High-temperature reactions in the ternary VO₂-Nb₂O₅(Ta₂O₅)-Fe₂O₃ systems

M. Piz¹, G. Dąbrowska, E. Filipek

West Pomeranian University of Technology, Szczecin, Department of Inorganic and Analytical Chemistry; al. Piastow 42; 71-065 Szczecin, Poland mpiz@zut.edu.pl

The binary and ternary mixture oxides of the transition elements with the general composition MO_2 , e.g. $CrVSbVO_6$, $Cr_2V_2WO_{10}$, $Cr_2Nb_2WO_{10}$, $NiV_2Nb_2O_{10}$, $CrVNbO_6$, $FeVSbO_6$, $Fe_{1-x}Cr_xVSbO_6$ show interesting electrical, magnetic and structural properties [1-5]. Some of these phases are currently being investigated as potential candidates for electrodes in the rechargeable lithium batteries [6] and as materials in the photoelectrolysis of water [7].

The investigations of solid-state reactions occurring among the oxides V₂O₄ (VO₂), Fe₂O₃ and Nb₂O₅ showed that in the system V-Fe-Nb-O the compound with the rutile-type structure is formed, possessing the formula FeVNbO₆ [1]. The research indicated that this compound was obtained in the following manner: first V₂Nb₂O₉ was prepared by heating either a V₂O₄ and Nb₂O₅ or V₂O₅ and NbO₂ mixture in evacuated quartz tubes at 1000°C. Then Fe₂O₃ was mixed with V₂Nb₂O₉ in 1:1 stoichiometric quantities and heated in vacuum at 1000°C.

The aim of the present work was, first of all, answering the question whether a compound analogous to $FeVNbO_6$ is formed in the system VO_2 -Ta₂O₅-Fe₂O₃. In such a case our further aim was carrying out a primary research on the structure and the thermal properties of these compounds. The present study is to confirm whether or not solid solutions with structure FeVNb(Ta)O₆, FeNbO₄ and/or FeTaO₄ are formed in the investigated systems. The aim was also to investigate their range of homogenity and thermal stability.

The research was started with attempts to synthesise the compounds $FeVNbO_6$ and $FeVTaO_6$. For this purpose, the several samples were preparated from the oxides VO_2 , Nb_2O_5 (Ta_2O_5) and Fe_2O_3 . The reacting substances were weighed in appropriate portions, homogenized by grinding in the mortar, shaped into pellets and heated, depending on the composition, in the temperature range 600–1200°C.

The kind of phases contained in the samples was identified on the base of X-ray phase analysis results (the diffractometer EMPYREAN II, PANalytical with CuK α /Ni radiation).

The DTA–TG investigations in the temperature range 20-1500°C were performed by means of an SDT 2960 (TA Instruments).

Preliminary results showed that in the systems $VO_2-Nb_2O_5-Fe_2O_3$ and $VO_2-Ta_2O_5-Fe_2O_3$, the solid solutions with the orthorhombic structure FeNbO₄ as well as FeTaO₄, are formed. The research in order to determine whether in the $VO_2-Nb_2O_5(Ta_2O_5)-Fe_2O_3$ systems also form the solid solutions with the rutile-type structure is continued.

- [1] K. Ravindran Nair, M. Greenblatt, *Mat.Res. Bull.*, **17** (1982) 1057-1060.
- [2] K. Ravindran Nair M. Greenblatt, W.H. McCarroll, Mat.Res. Bull., 18 (1983) 309-314.
- [3] J. Typek, N. Guskos, E. Filipek, M. Piz, Rev. Adv. Mater. Sci., 23 (2010) 196-206.
- [4] J. Typek, N. Guskos, E. Filipek, J. Non-Cryst.Solids, 354 (2008) 4494-4499.
- [5] E. Filipek, G. Dabrowska, J. Alloys Compd., 523 (2012) 102-107.
- [6] P. G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed., 47 (2008) 2930-2946.
- [7] K. Hashimoto, H. Irie, A. Fujishima, AAPPS Bulletin, 17 (2007) 12-29.